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Introduction

Detecting modules, or communities, in real 
complex network is an important open issue

Modules affect physical processes on networks: 
synchronization, information or virus spreading, 
etc.

Once modules are found, what can be said 
about them?

Great effort to propose modules detection 
algorithms: Fortunato, Phys. Rep. 486, 75-174, 
2010 
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Introduction

Goal: Find the roles of individual nodes in the 
network
Idea: nodes with the same role should have 
similar topological properties, with respect to a
mesoscopic description in terms of modules 

Define:

Within modules degree z-score

Participation ratio

First attempt: Guimerà et al. Nature 433 (2005)

statement holds for virtually any organization; that is, the role of
chief executive is defined irrespective of the particular organization
considered.

We propose a new method to determine the role of a node in a
complex network. Our approach is based on the idea that nodes
with the same role should have similar topological properties24 (see
Supplementary Information for a discussion on how our approach
relates to previous work). We predict that the role of a node can be
determined, to a great extent, by its within-module degree and its
participation coefficient, which define how the node is positioned in
its own module and with respect to other modules25,26 (see
Methods). These two properties are easily computed once the
modules of a network are known.

The within-module degree z i measures how ‘well-connected’
node i is to other nodes in the module. High values of z i indicate
high within-module degrees and vice versa. The participation
coefficient Pi measures how ‘well-distributed’ the links of node i
are among different modules. The participation coefficient Pi is
close to 1 if its links are uniformly distributed among all the
modules, and 0 if all its links are within its own module.

We define heuristically seven different universal roles, each
defined by a different region in the z–P parameter space (Fig. 2).
According to the within-module degree, we classify nodes with
z $ 2.5 as module hubs and nodes with z , 2.5 as non-hubs. Both
hub and non-hub nodes are then more finely characterized by using
the values of the participation coefficient (see Supplementary
Information for a detailed justification of this classification scheme,
and for a discussion on possible alternatives).

We find that non-hub nodes can be naturally divided into four
different roles: (R1) ultra-peripheral nodes; that is, nodes with all
their links within their module (P # 0.05); (R2) peripheral nodes;
that is, nodes with most links within their module (0.05
,P # 0.62); (R3) non-hub connector nodes; that is, nodes with
many links to other modules (0.62 , P # 0.80); and (R4) non-hub
kinless nodes; that is, nodes with links homogeneously distributed
among all modules (P . 0.80). We find that hub nodes can be
naturally divided into three different roles: (R5) provincial hubs;
that is, hub nodes with the vast majority of links within their
module (P # 0.30); (R6) connector hubs; that is, hubs with many
links to most of the other modules (0.30 , P # 0.75); and (R7)
kinless hubs; that is, hubs with links homogeneously distributed
among all modules (P . 0.75).

To test the applicability of our approach to complex biological
networks, we consider the cartographic representation of
the metabolic networks6–9,14 of twelve organisms: four bacteria
(Escherichia coli, Bacillus subtilis, Lactococcus lactis and Therma-
synechococcus elongatus), four eukaryotes (Saccharomyces cerevisiae,
Caenorhabditis elegans, Plasmodium falciparum and Homo sapiens),
and four archaea (Pyrococcus furiosus, Aeropyrum pernix, Archaeo-
globus fulgidus and Sulfolobus solfataricus). In metabolic networks,
nodes represent metabolites and two nodes i and j are connected by
a link if there is a chemical reaction in which i is a substrate and j
a product, or vice versa. In our analysis, we use the database
developed by Ma and Zeng8 (MZ) from the Kyoto Encyclopedia
of Genes and Genomes27 (KEGG). The results we report are not
altered if we consider the complete KEGG database instead (Figs 2c
and 4b, and Supplementary Information).

First, we identify the functional modules in the different meta-
bolic networks (Fig. 3). Finding modules in metabolic networks
purely on the basis of topological properties is an extremely
important task. For example, Schuster et al. have reported on the
impossibility of obtaining elementary flux modes28 from complete
metabolic networks due to the combinatorial explosion of the
number of such modes29. Our algorithm identifies an average of
15 different modules in each metabolic network—with a maximum
of 19 for E. coli andH. sapiens, and a minimum of 11 for A. fulgidus.
As expected, the density of links within each of the modules is

significantly larger than between modules—typically 100–1,000
times larger (see Supplementary Information).
To assess how each of the modules is related to the pathways

traditionally defined in biology, we use the classification scheme
proposed in KEGG, which includes nine major pathways: carbo-
hydrate metabolism, energy metabolism, lipid metabolism, nucleo-
tide metabolism, amino-acid metabolism, glycan biosynthesis and
metabolism, metabolism of cofactors and vitamins, biosynthesis of
secondary metabolites and biodegradation of xenobiotics. Each
metabolite in the KEGG database is assigned to at least one pathway;
thus, we can determine to which pathways themetabolites in a given

Figure 2 Roles and regions in the z–P parameter space. a, Each node in a network can be
characterized by its within-module degree and its participation coefficient (see Methods

for definitions). We classify nodes with z $ 2.5 as module hubs and nodes with z , 2.5

as non-hubs. We find that non-hub nodes can be naturally assigned into four different

roles: (R1) ultra-peripheral nodes; (R2) peripheral nodes; (R3) non-hub connector nodes;

and (R4) non-hub kinless nodes. We find that hub nodes can be naturally assigned into

three different roles: (R5) provincial hubs; (R6) connector hubs; and (R7) kinless hubs (see

text and Supplementary Information for details). b, Metabolite role determination for the
metabolic network of E. coli, as obtained from the MZ database. Each metabolite is

represented as a point in the z–P parameter space, and is coloured according to its role.

c, Same as b but for the complete KEGG database.
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where Cf is the cost after the update and Ci is the cost before the update.
Specifically, at each T we propose ni ¼ fS2 individual node movements from one

module to another, where S is the number of nodes in the network. We also propose
nc ¼ fS collective movements, which involve either merging two modules or splitting a
module. For f we typically choose f ¼ 1. After the movements are evaluated at a certain T,
the system is cooled down to T 0 ¼ cT, with c ¼ 0.995.

Within-module degree and participation coefficient
Each module can be organized in very different ways, ranging from totally centralized—
with one or a few nodes connected to all the others—to totally decentralized, with all nodes
having similar connectivities. Nodes with similar roles are expected to have similar relative
within-module connectivity. If k i is the number of links of node i to other nodes in its
module s i, !ksi is the average of k over all the nodes in s i, and jksi is the standard deviation of
k in s i, then:

zi ¼
ki 2 !ksi
jksi

ð3Þ

is the so-called z-score. The within-module degree z-score measures how well-connected
node i is to other nodes in the module.

Different roles can also arise because of the connections of a node to modules other
than its own. For example, two nodes with the same z-score will play different roles if one
of them is connected to several nodes in other modules while the other is not. We define
the participation coefficient Pi of node i as:

Pi ¼ 12
XNM

s¼1

kis
ki

! "2

ð4Þ

where k is is the number of links of node i to nodes in module s, and k i is the total degree of
node i. The participation coefficient of a node is therefore close to 1 if its links are
uniformly distributed among all the modules and 0 if all its links are within its own
module.

Loss rate
To quantify the relation between roles and conservation, we calculate to what extent
metabolites are conserved in the different species depending on the role they play.
Specifically, for a pair of species, A and B, we define the loss rate as the probability
p(RA ¼ 0jRB ¼ R) ; p lost(R) that a metabolite is not present in one of the species
(RA ¼ 0) given that it plays roleR in the other species (RB ¼ R). Structurally relevant roles
are expected to have low values of p lost(R) and vice versa.

Received 17 August; accepted 16 December 2004; doi:10.1038/nature03288.
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where Cf is the cost after the update and Ci is the cost before the update.
Specifically, at each T we propose ni ¼ fS2 individual node movements from one

module to another, where S is the number of nodes in the network. We also propose
nc ¼ fS collective movements, which involve either merging two modules or splitting a
module. For f we typically choose f ¼ 1. After the movements are evaluated at a certain T,
the system is cooled down to T 0 ¼ cT, with c ¼ 0.995.

Within-module degree and participation coefficient
Each module can be organized in very different ways, ranging from totally centralized—
with one or a few nodes connected to all the others—to totally decentralized, with all nodes
having similar connectivities. Nodes with similar roles are expected to have similar relative
within-module connectivity. If k i is the number of links of node i to other nodes in its
module s i, !ksi is the average of k over all the nodes in s i, and jksi is the standard deviation of
k in s i, then:

zi ¼
ki 2 !ksi
jksi

ð3Þ

is the so-called z-score. The within-module degree z-score measures how well-connected
node i is to other nodes in the module.

Different roles can also arise because of the connections of a node to modules other
than its own. For example, two nodes with the same z-score will play different roles if one
of them is connected to several nodes in other modules while the other is not. We define
the participation coefficient Pi of node i as:

Pi ¼ 12
XNM

s¼1

kis
ki

! "2

ð4Þ

where k is is the number of links of node i to nodes in module s, and k i is the total degree of
node i. The participation coefficient of a node is therefore close to 1 if its links are
uniformly distributed among all the modules and 0 if all its links are within its own
module.

Loss rate
To quantify the relation between roles and conservation, we calculate to what extent
metabolites are conserved in the different species depending on the role they play.
Specifically, for a pair of species, A and B, we define the loss rate as the probability
p(RA ¼ 0jRB ¼ R) ; p lost(R) that a metabolite is not present in one of the species
(RA ¼ 0) given that it plays roleR in the other species (RB ¼ R). Structurally relevant roles
are expected to have low values of p lost(R) and vice versa.
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20. Donetti, L. & Muñoz, M. A. Detecting network communities: A new systematic and efficient

algorithm. J. Stat. Mech. Theor. Exp., P10012 (2004).
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Introduction

Our approach:

1. Find the best linear projection of the 
modular structure of a network

2. Truncate the projection in a plane

3. Analyze the structure of the plane to 
uncover the architecture of the modules
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Contribution matrix

N

N

W

N

M

S

1    0    0    0
0    0    1    0

0    0    0    1

Ciα =
N∑

j=1

WijSjα

(weights matrix) (partition matrix)

N

M

C
(contribution matrix)

0    1    4    2    0    0    1
0    0    0    0    1    1    2
0    2    0    1    2    3    1
1    1    0    0    2    4    5
2    0    2    1    0    3    4
0    1    0    2    0    0    0
3    0    1    4    0    0    0

0    0    0    1
0    1    0    0
0    1    0    0
1    0    0    0

2    2    0    0
3    5    0    1

2    0    4    2

6    6    0    1
4    3    2    3
1    0    0    2
0    0    1    7

1

2
3

4

5

6
7

24

1

1

(the partition is 
given)
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■ The columns of V form a set of orthonormal "input" or "analysing" 
basis vector directions for M. (These are the eigenvectors of M * 
M.)

■ The columns of U form a set of orthonormal "output" basis vector 
directions for M. (These are the eigenvectors of MM * .)

■ The diagonal values in matrix Σ are the singular values, which can 
be thought of as scalar "gain controls" by which each 
corresponding input is multiplied to give a corresponding output. 
(These are the square roots of the eigenvalues of MM * and M * M 
that correspond with the same columns in U and V.)

Suppose M is an m-by-n real (or complex) matrix. Then there exists a factorization of the 
form

M = U Σ V*

where U is an m-by-m unitary matrix, the matrix Σ is m-by-n diagonal matrix with 
nonnegative real numbers on the diagonal, and V* denotes the conjugate transpose of V, 
an n-by-n unitary matrix. This is called a singular-value decomposition of M.

Linear projection: Singular Value Decomposition 

martes 15 de junio de 2010
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Singular Value Decomposition (SVD)

N

N

U

M

M

VT

N

M

Σ

σ1

σ2

σmN

M

C

=
. . .

· · · 0 · · ·

Truncated Singular Value Decomposition (TSVD)

N

N

U

M

M

VT

N

M

Σ

12.4
7.7

1.3N

M

C

=
. . .

· · · 0 · · ·

least squares optimal

2    2    0    0
3    5    0    1

2    0    4    2

6    6    0    1
4    3    2    3
1    0    0    2
0    0    1    7

.2 -.3   .8  -.2  -.3  .1    0

.2  .1    0   .1    0   .2   .9

.4  .2   -.2  -.7   0  .4  -.1

·  ·  ·

·  ·  ·

.6 -.6  -.1  -.3

.2  .4  -.3  -.8

...

...
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Truncated Singular Value Decomposition (TSVD), r = 2

Node i contribution projection

Intramodular projection of α

Modular projection of α
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The output of TSVD

N = 34
M = 4

martes 15 de junio de 2010



10

The output of TSVD

N = 3618
M = 26
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Interpreting TSVD: the structure of individual modules

Rint = R cos φ

Rext = R sinφ

➠ statistics for each node in each module
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Statistics: Box and whiskers

Box plots: Box and whisker plots are uniform in 
their use of the box. The bottom and top of the 
box are always the 25th and 75th percentile 
(the lower and upper quartiles, respectively), 
and the band near the middle of the box is 
always the 50th percentile (the median). 
The lowest datum still within 1.5 IQR of the 
lower quartile, and the highest datum still within 
1.5 IQR of the upper quartile. Any data not 
included between the whiskers should be 
plotted as an outlier with a dot.  
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Interpreting TSVD: the structure 
of individual modules

Rint = R cos φ

NSE-Asia = 547
NUSA = 507
NWE = 423
NCA = 292
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Interpreting TSVD: the structure 
of individual modules

Rint = R cos φ

Rext = R sinφ

NSE-Asia = 547
NUSA = 507
NWE = 423
NCA = 292
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Interpreting TSVD: interrelations between modules

m̃α =
∑

i∈α

ñi
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Interpreting TSVD: interrelations between modules
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Summary

N

N

U
least squares optimal

.2 -.3   .8  -.2  -.3  .1    0

.2  .1    0   .1    0   .2   .9

.4  .2   -.2  -.7   0  .4  -.1

...
N

M

C
(contribution matrix)

2    2    0    0
3    5    0    1

2    0    4    2

6    6    0    1
4    3    2    3
1    0    0    2
0    0    1    7
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The output of TSVD
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The output of TSVD
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The output of TSVD
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Information loss

In the case of a rank r = 2 approximation, the unicity of the two-ranked 
decomposition is ensured if singular values satisfy σ1 > σ2 > σ3

Loss of information of this projection compared to the initial data by 
computing the relative difference between the Frobenius norms:

airports: 18.2%

AS-P2P: 15.8%
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Estructural navigability

R_ext: How externally connected a node is 

θ to what neighborhood a node belongs

Greedy routing: select a neighbor that minimizes
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Preliminary results of local routing on the AS network

average path length 5.1. Success ratio 97.2%
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structure of individual modules
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Thanks for your attention
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